

NATURAL HAZARDS DIVISION of the CANTON BERN

Spatial probability

of occurrence

The higher the spatial

probability of occurren-

ce, the smaller the un-

certainty where hazar-

dous processes will occur

and where intervention

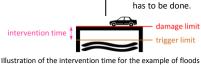
Natural hazards division is ...

- Responsible office for gravitative natural hazards such as avalanches, landslides, rockfall, debris flows
- Guide and support of security responsibles by
- hazard assessment in case of critical situations
 evaluation and coordination of protection measures
- evaluation and coordination of protection measures
- instruction of fire services, civil protection organizations and crisis teams in managing natural hazards
 developing emergency plans
- First responder and chairman of different emergency
- coordination groups (debris flow, glacier hazards)
- Tester and assistant of the national natural hazard platform GIN and the avalanche tool ProNXD.

GIN as established tool

- GIN is the common information platform for natural hazards of the Swiss Federal Government for all cantons
- It contains information on all weather, discharge, snow, including natural hazard bulletins and current warnings
- Well established at the national and cantonal levels (experts), poorly established at the local level (laymen)
- Main focus on measurements, models are subordinated, linkage between weather forecast and influence on local hazard disposition almost lacks

_


Gaps

- Variable disposition is poorly monitored and almost not implemented in forecast and warning models
- The existing warnings are too general to cause a benefit on local level and the nowcasting component in warnings is (almost) inexistent
- More probabilistic than deterministic data for forecast would be useful
- Forecast trends for 4 to 7 days ahead are precious to handle floods in large catchment areas, avalanche hazards and forest fires

Challenges

Obviousness of local trigger limits

If the trigger limit can clearly be determined and there's enough time until the damage level is reached, a intervention will be successful.

Successful intervention

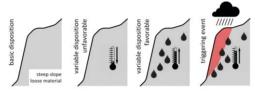
The combination of spatial probability of occurrence and the obviousness of local trigger limits define whether a preventive intervention is possible or not.

obviousness of local trigger limits 100%

Process types with high spatial probability and reliable local trigger limits have a great potential for a successful managing based on improved weather forecast.

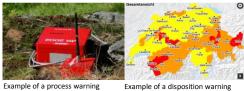
Crying wolf phenomenon

Process types with low spatial probability of occurrence and bad obviousness of local trigger limits cause warning fatigue in case of alarming.



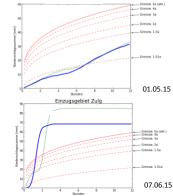
Needs for improvement

- Based on the existing platform, the following improvements are helpful, beneath the filling the gaps listed on the left
- Forecast
- Linkage of forecasted weather data to events in the past by nearest neighbour models (e.g. as ProNXD of SLF)
- Derivate of existing data to e.g. local soil moisture, development of ground humidity
- Nowcast
 - Analyse of nowcast, fore-cast and local trigger limits (cf. figure on the right)
 - Information on the occurrence and the size of hail as well as the movement of thunderstorms


- Variable disposition is characterized by timedependent parameters such as e.g. soil moisture
- Trigger events activate the hazardous process by a given disposition. This may be e.g. precipitation
- For an event to occur both trigger and the variable disposition must be critical and coincide.

Warning systems

Process warning systems


- Observe the development of an ongoing hazardous process or its direct triggering event on a specific source of danger (clearly located in geographic terms, usually small-scaled)
- Output: alarm or warning
- Examples: gauging stations, measurement of landslide velocities, trigger lines

Example of a process warning system: geophone

Disposition warning systems

- Observe the variable disposition or triggering event of a process type in geographically larger areas, not specifically towards a source of danger
- Output: warning
- Examples: forecast of heavy snowfall, forecast for thunderstorms, output of discharge modelling

system: flood risk map

Example of a permanent comparison of measured rain by radar and rain gauges and local trigger limits for flash floods in the Zulg basin

